Convexity for a simply connected $p$-adic group
نویسندگان
چکیده
منابع مشابه
CONVEXITY FOR A SIMPLY CONNECTED p-ADIC GROUP
In [4] Kostant showed that the set of Iwasawa double cosets which intersect a given Cartan double coset in a semisimple Lie group corresponds to a certain convex subset in the Lie algebra of a maximal torus of the group. As a consequence, he established that representatives for the double cosets relative to a maximal compact subgroup of a semisimple Lie group may be chosen in the unipotent radi...
متن کاملp Harmonic Measure in Simply Connected Domains
Let Ω be a bounded simply connected domain in the complex plane, C. Let N be a neighborhood of ∂Ω, let p be fixed, 1 < p < ∞, and let û be a positive weak solution to the p Laplace equation in Ω ∩N. Assume that û has zero boundary values on ∂Ω in the Sobolev sense and extend û to N \ Ω by putting û ≡ 0 on N \ Ω. Then there exists a positive finite Borel measure μ̂ on C with support contained in ...
متن کاملThe Stable Mapping Class Group of Simply Connected 4-manifolds
We consider mapping class groups Γ(M) = π0Diff(M fix ∂M) of smooth compact simply connected oriented 4–manifolds M bounded by a collection of 3– spheres. We show that if M contains CP 2 or CP 2 as a connected summand then all Dehn twists around 3–spheres are trivial, and furthermore, Γ(M) is independent of the number of boundary components. By repackaging classical results in surgery and handle...
متن کاملp Harmonic Measure in Simply Connected Domains Revisited
Let Ω be a bounded simply connected domain in the complex plane, C. Let N be a neighborhood of ∂Ω, let p be fixed, 1 < p < ∞, and let û be a positive weak solution to the p Laplace equation in Ω ∩N. Assume that û has zero boundary values on ∂Ω in the Sobolev sense and extend û to N \ Ω by putting û ≡ 0 on N \ Ω. Then there exists a positive finite Borel measure μ̂ on C with support contained in ...
متن کاملIsomorphisms of p-adic group rings
A long-standing problem, first posed by Graham Higman [15] and later by Brauer [4] is the “isomorphism problem for integral group rings.” Given finite groups G and H, is it true that ZG = ZH implies G 2: H? Many authors have worked on this question, but progress has been difficult [30]. Perhaps the best positive result was that of Whitcomb in 1968 [37], who showed that the implication G = H hol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1975
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1975-13883-3